
Software Quality

Lesson 4:

Output Handling

WHAT IS OUTPUT HANDLING?

Handling the output from a web application is exactly the same as passing data to
subsystems:
▪ The final subsystem we pass data to is the visitor’s browser, and the HTML

parser in the browser is just another system.

When we send data to it, we need to pay attention to metacharacters.

Database Server

Web Server

Internet

Web Application

strings ?

2

Many programmers who are good at escaping metacharacters that get passed to
internal systems, nevertheless forget to think about the final destination of the data
as a system.

And given a lack of proper HTML escaping,
an attacker has lots of cool attacks to choose
from.

3

Cross-site Scripting

CROSS-SITE SCRIPTING (XSS)

XSS is about tricking a web server into presenting malicious HTML, typically
script code, to a user.

1. The intention is often to steal session information, and thus be able to
contact the site on behalf of the victim.

2. Scripts may also be used to change the contents of web pages in order to
displays false information to the visitor, and it may be used to redirect forms so
that secret data are posted to the attacker’s computer.

XSS generally attacks the user of the web application, not the application itself.

▪ The attacks are possible when the web application lacks proper output
filtering.

5

EXAMPLE: A GUEST BOOK

Suppose we have a simple guest book, which lets visitors enter whatever they like,
and just appends the new text to whatever was there before.

What happen with this input?

No critical issue, but the web application will pass this to visitors reading the guest
book:

6

start
comment

marker

How about this script:

Or this one in a discussion site for kids:

We need some kind of control over what a web application passes to the client.

7

Session Hijacking

XSS-BASED SESSION HIJACKING

As cookies are available to a script, Cross-site Scripting may be used to hijack
cookie-based sessions (discussed in week 1).

If a bad guy gets access to someone else’s session cookie, he may often appear as
that someone to the server by installing the cookie in his own browser.

A victim logging in to a web site
will get a unique session ID cookie.

The attacker wants that cookie to
impersonate the victim.

How does the attacker
get to the cookie?

9

The Mechanism

Four steps are needed in the simplest possible
XSS-based session hijacking.

The wanted cookie exists only in communication
between the victim and the target web server.

For a script to successfully access this cookie,
it will have to be included in pages sent from
the web server directly to the victim’s browser.

How attacker can do it?

10

Attacker should follow the above steps if the web server, for example hosts a
discussion application that is vulnerable to XSS because it allows scripts in notes
entered by the users.

(1) The attacker first joins a discussion,
entering a note that contains some cookie-
stealing JavaScript.

The web server stores the note in its internal
database.

Later, another user, the victim, logs in to the
discussion site.

Upon logging in, he receives his personal
session ID from the web server.

11

(2) When the user asks to read the attacker’s note, the web server builds a web page
containing the note text, including the malicious script. This page is then passed to
the victim.

(3) As part of displaying the web page, the
victim’s browser will also run the script.

The script picks up the cookie that is
associated with the web page, i.e. the cookie
containing the session ID, and immediately
passes the cookie to the attacker’s computer.

(4) After receiving the cookie, the attacker
installs it in his own browser, and visits the
discussion web server .

12

The web server receives the stolen session ID from the attacker, and thinks it is
talking to the victim.

The attacker now fully impersonates the victim on the discussion site.

The Malicious script

The malicious script makes the browser of the victim pass the cookie to the
computer owned by the attacker.

Passing the cookie is most easily done using a script that redirects the browser to a
web server running on the attacker’s computer, taking the cookie with it on the
journey.

13

on the attacker’s web server
It is a small web application that accepts a what

parameter, which the above JavaScript carefully fills in

is a JavaScript variable contains any cookies associated
with the connection between the browser executing the

script and the server providing the web page.

stealth

The victim will quickly realize it, because both URL and the contents
of the web page suddenly change!
▪ To hide the theft, the attacker’s web server may generate a response

containing a new redirect that immediately sends the browser back to the
original site.

14

The cookie is
added to avoid
redirection loops,
If the script is
stored on the
target web server.

The steal.php page would respond with a new web page containing nothing more
than this little redirection code:

The user may see a short flicker, but he will otherwise not be able to tell that his
browser paid a quick visit to the attacker’s web server.

How about the browser’s history?
▪ Not even the browser’s history will be able to tell the tale, as

document.location.replace overwrites the current history entry with the
new URL.

15

Text Modification

EXAMPLE:

Scripts may be used to change information on a page as it is displayed.

It is possible to steal money from an on-line bank, in which certain payment requests
required manual inspection before being accepted.

17

In these special requests,
customers registered a source
and destination account, an
amount, an address, and various
other information.

Payment Request Form Bank of Digital Trades

Date: …………………

To Acc. No.: ……………………..

Account Holder: ……………………..

Address: ……………………………………………………………………..

From Acc. No.: ……………………..

Account Holder: ……………………..

Address: ……………………………………………………………………..

Amount: € …………………….

Description: ……………………………………………………………………..

EXAMPLE: ONLINE-BANKING

Requests were stored in a database to wait for manual inspection. The inspection
was performed by a clerk in the bank using a regular web browser.

18

An internal web application pulled money
transfer requests from the database and
displayed them in the browser of the clerk.

Unfortunately, that application failed to do
filtering on the address field, making it possible to
include scripts that would be run in the browser
of the clerk as she inspected the page.

Server

Manual Inspection

Payment Request

Web App

An attacker would want to transfer money from a victim’s account (1234.56.78901)
to an account of his own.

19

To do that, he would enter the victim’s account
as the source, and one of his own as the
destination for the money transfer.

Normally, this transfer would be rejected by the
clerk: the attacker is not allowed to move money
from the victim’s account.

Server

Manual Inspection

Payment Request

Web App

But as the address field allowed injection of scripts, the attacker could add the
following code, which refers to another account owned by the attacker
(9876.54.32109):

Once the clerk viewed the information in her browser, the script would run and
replace all occurrences of the victim’s account in the web page with that of the
attacker.

20

The web page would show seemingly
valid information, while the database
still contained information that would
let the attacker steal money.

If the clerk accepted the false
information in the modified web page,
the automated money transfer program
would accept the invalid information
from the database.

21

Server

Manual Inspection

Payment Request

Web App

Problem

THE PROBLEM

Cross-site Scripting works when a web application may be tricked into passing
attacker-designed HTML constructs to the users’ browsers.
▪ Hence, XSS is just another metacharacter problem.

23

The HTML parser in the web
browser interprets pieces of HTML
that the web application programmer
did not intend to send, just like an
SQL parser may interpret
additional SQL constructs when
given, for example, unexpected and
unescaped quote characters.

▪ The most obvious Cross-site Scripting occurs when someone inserts a new tag,
typically a script tag:

• This insertion works when the HTML parser is not already ‘‘inside’’ another
tag.

24

▪ In some cases, such as when data are inserted as part of a tag attribute, the
parser is not ready to accept a new tag directly.
▪ Imagine the following part of a web page, in which some user provided input

will be inserted where the dots are:

▪ In this case, to be able to insert a new tag, the attacker will first have to terminate
the input tag to have the HTML parser switch context.

25

▪ The following line will terminate the value attribute and the input tag in which
the attribute is present, and then add some—probably malicious—script:

▪ As the original attribute value was encapsulated in double quotes, the attacker
inserts a double quote and a greater than sign to open up for a new script tag.

▪ If the value was encapsulated in single quotes, the attacker would start with a
single quote.

The attacker will have to analyze the HTML to determine in what kind of context
his insertion will be made, and insert necessary metacharacters to switch to a ‘‘script
friendly’’ context.

26

Solution

HOW TO AVOID XSS?

How do we make our applications stand against Cross-site Scripting attacks?

Since Cross-site Scripting is a metacharacter problem, we will have to do
something to the metacharacters to make them lose their meaning.

▪ We have to escape them in some way, and when dealing with HTML, the
escaping is called HTML encoding.

28

WHEN?

When do we escape those characters to prevent Cross-site Scripting?’

Many people choose to handle the XSS problem at input time.

▪ Either because they see it as an input problem,

▪ Or because they like to get rid of problems as soon as possible,

▪ Or because they think it is hard to remember doing any special treatment every
time they generate some output—which typically happens quite frequently in a
web application.

29

but

Cross-site Scripting is clearly a data passing problem, so it should be dealt with at
the time data are passed.
▪ For HTML that time is whenever our application generates some output.

There are at least three good reasons for delaying the HTML filtering to output
time:

1. It is not just user generated input that must be HTML encoded.
When reading data from a file, from a database or any other external
source, HTML encoding should be done before passing the content to
the client.
It is easier to remember doing the filtering if the rule is ‘‘filter output when
output is to be done’’.

30

2. When filtering at input time, any incoming data that is stored in a database
will be HTML encoded.

Any non-HTML part of the application that uses the same database (e.g.
an invoice printing unit, to be overly creative) will have to remove the
HTML encoding.

3. HTML encoding expands data strings.
The expansion may give surprising results when incoming data are stored in
restricted length database fields, which is common practice.

31

HTML FILTERING

There are generally three options depending on the data:

1. If data is not supposed to contain markup at all,
 We simply HTML encode them before passing them to the client.

2. If the user should be allowed to enter some markup but not the dangerous
constructs, it gets quite hard.
 We will need to look at all tags and attributes and let some through, while HTML

encoding others.

3. If the application should have full trust in the users and allow them to enter
whatever markup they like,
 We simply just send the data as they appear. No special handling needed, but

keep the consequences in mind.

32

HTML ENCODING

HTML encoding is the mapping of certain HTML metacharacters to their
character entity equivalents:

1. Map every occurrence of & (ampersand) to &
2. Then replace every " (double quote) with "
3. Then every < (less than) with <
4. And finally replace every > (greater than) with >

If the application uses single quotes to encapsulate tag attributes, you may need to replace
the single quote character with ' too.

The implication of doing HTML encoding is that the browser will display data
exactly as they were written.

33

Summary

34

SUMMARY

▪ To avoid being vulnerable to Cross-site Scripting, a web site must be very
careful with what it sends to the users.

▪ Any data that are to be presented to the client must be carefully inspected and
filtered to remove anything that may lead to execution of scripts.

▪ Safe filtering of the output involves removing everything that can be
interpreted as a script by any browser out there.

▪ The only safe filtering is to HTML encode (or totally remove, which is often
not an option) certain characters, and at the same time to state what character
set the encoding has been done for.

35

SUMMARY

▪ In cases where some markup should be allowed, one should not only pay
attention to tags, but also to attributes and attribute values.

▪ Every filtering should be done according to the whitelisting principle, in which
allowed tags and attributes are let through, while all the unknown are removed.

36

YOUR TASKS FOR THIS WEEK

Reading:
▪ “Innocent Code: A Security Wake-Up Call for Web Programmers (Chapter 4).

37

38

LAB PRACTICE

SQL Injection
▪ Download Lab Week 4 Instruction file from course webpage on GitHub or Edmodo.

https://hogeschool.github.io/Software-Quality/

Read the Instructions and perform the tasks.

39

https://hogeschool.github.io/Software-Quality/

