
Software Quality

Lesson 5: 

Web Trojans



MALWARE

Malicious Software
▪ Viruses

▪ Trojans

▪ Bots

▪ …

▪ Things that bad guys use to compromise your system …

− Steal your resources

− Steal your personal stuff

− …

2



TYPES OF MALWARE

Not all types of Malware are destructive.

▪ But they may cause very annoying behaviors.

− Generate bunch of ads
− Cause your computer run slowly

These types of programs are not classified as Malware, by some experts.

▪ They are known as Potentially Unwanted Programs (PUP) or Potentially 
Unwanted Applications (PUA).

▪ Sometimes, Bundled in legitimate software as a package, but

− Negatively affect a computer
− Introduce other security risks
− Buy something that you do not need

3



ADWARE

Adware is software that displays unwanted advertising on a computer or mobile 
device. 
− usually in the form of pop-up ads 

− redirect your browser to a certain website 

▪ While it usually does not cause any direct harm to the user's device, but it can be 
very annoying behaviour 

− can sometimes contain spyware.

4



BROWSER HIJACKER

Hijacking a browser means that the malicious software has 
redirected your computer's browser to a different website, 
generally used to display advertising. 

It can be used to:
− generate visits to a certain website.

− lead you to a malicious website that will download malware onto 

your computer.

5



SPYWARE

It is designed to spy. 

It hides on your computer and monitors everything you 
do. 

It can:
− track the web activity 

− access email

− steal your username and password 

6



RANSOMWARE

With ransomware, someone can lock up your computer

▪ holding it hostage and forcing you to pay a lot of 
money just to get your files back.

− Regularly backup the important things on your computer

7



VIRUS

Almost all viruses are attached to an executable file which means the virus may 
exist on a system, but will not spread until a user run the infected program. 

Viruses often originate on the internet and spread when:

▪ downloading a file infected with a virus 

▪ peer-to-peer file sharing 

▪ email attachment

▪ …

8

Virus

Exit

…

…

…

Entry Point

Address of Entry Point

…

…

…

…

…

…

Exit

O
rig

in
a
l E

x
e
c
u
ta

b
le

 F
ile

H
e
a
d
e
r



MACRO VIRUS

Macro viruses are written specifically to alter macros which are 
common commands that word processing programs use.

▪ Once opened macros can cause changes in the text 
documents such as

▪ removing or inserting words 
▪ changing the font 

▪ …

▪ some macros can even access email accounts 
and send out copies of itself to a users contacts.

9



WORM

A computer worm’s main objective is to spread as many copies of itself in any 
way possible from computer to computer.

a worm can replicate itself without any human interaction.

− it does not need to attach itself to a program in order to cause damage. 

Worms can 

− modify and delete files 

− inject additional malware 
onto the computer

…

10



SCAREWARE/SCAMWARE/ROGUEWARE/FAKE ALERT

A malware that says there is a problem on your machine and offers to solve it, if 
you pay them.

Often, it will pretend to be an antivirus software, popping up on your screen to tell 
you that your machine:

− is full of malware 

− operating system has errors

− is running slowly 

− could crash

11



Computer Trojan



WHAT IS A TROJAN?

Trojan horse is something that appears
to be a gift, but that actually is a trap.

In the context of computer security, the
term has materialized into ‘‘a program
that appears to be cool, but perform
some scary damages, e.g. erases all files.’’

13

The ‘‘Trojan’’ part comes from the
Greek legend of the Trojan horse.



TYPES OF TROJANS

Depends of the purpose of the trojan, they can be classified into different 
types:

▪ Banking Trojan

▪ Backdoor Trojan

▪ Downloader Trojan

▪ Information Stealer

▪ Remote Access Trojan

▪ DDoS Trojan

14



EXAMPLE 1

Imagine a voting web site allowing users to choose among different alternatives to
collect statistics.

Since the form uses the GET method, users voting will visit URLs like this when
they submit the form:

15



How it can be attacked?

An attacker can easily copy the URL and mail it to lots of people and mislead them
into the link.

If several of the targeted people follow the link, they all give a vote after the
attacker’s liking, and the statistics get all wrong.

16



EXAMPLE 2

The really scary threat with Web Trojans is that they work with authentication too.

As these trojans function by tricking a user or his browser into visiting a site, things
will be done on behalf of the user if he is already logged in to the target site.

What happens if the user who is logged in to his on-line bank, visit this HTML in
the browser:

17



Automatic authentication

For this to work, one will have to reach the victim while he is logged in to the target
site.
▪ If the user is not always logged in, the attacker will somehow have to make sure

the victim is signed on to the target site before tricking him into viewing the
malicious HTML.

▪ How?

18

So, if the victim is already logged in to the bank, and the bank
accepts that kind of form, the user will unintentionally transfer some
money to the attacker, or to someone the attacker wants to get
trouble into with the authorities.



User should be logged in

▪ Sometimes that is quite easy:
▪ if the user has clicked a ‘‘remember me’’ option, he will always be logged in.
▪ if the target site is an intranet solution based on domain authentication.
▪ if single sign-on solutions (like Google, Microsoft Passport, etc.) users may

be logged in to more sites than they imagine.

▪ For a site where the attacker may add content, e.g. a discussion forum, that may
be easy:
▪ just add a very tempting note in the forum asking people to take a look at a

link. Anyone reading the note is guaranteed to be logged in:

▪ Social Engineering to the rescue!

19



Example

The target site is our bank named www.bank.example

The attacker can send the victim an E-mail that appears to come from the bank:

20

http://www.bank.example@520962083/login

http://www.bank.example/
http://www.bank.example@520962083/login


Problem



THE PROBLEM

Many web sites, including banks, shops, discussion sites, and whatnot are vulnerable
to some kind of Web Trojan trickery.

▪ To see how to design a web solution that is not vulnerable, we need to
understand the problem.

When someone browses our site, we typically generate web pages that contain
URLs and forms inviting the user to do something.

▪ Web Trojans work because it is possible for attackers to give victims these
offers on our behalf.

To avoid the threat, we need to make sure the action a user takes really is based on
an offer we once gave him, rather than on an offer given him by someone else.
▪ How?

22



Use referer?

Many developers think that the Referer header is a good thing to check to make
sure the visitor came from our site.

But in the Web Trojan case it could have been useful, if it was not for the fact that
many filter it out for privacy reasons.
▪ Referer headers are thus often missing in totally legitimate requests, so we

need to find a method that does not depend on it.

23

Web Server

Web Application

UserAttacker

▪ In general, the Referer header
should not be used for security,
as it comes from the client-side.



reauthentication?

An approach that would work would be to require reauthentication of the user for
every action that changes something.

This solution includes adding a password field to every form presented to the
client—an approach taken by many online banks.

Unfortunately, giving passwords all the time is cumbersome, so we will try a different
approach.

24



Solution 



A PRACTICAL SOLUTION: TICKET SYSTEM

To protect against Web Trojans, developers should implement a ‘‘ticket system’’.

Central to this system are nonpredictable, random numbers, called tickets.

A web page may typically contain one or more offers to do an action that has side
effects.
For each such offer, generate a unique, random string, and connect it with the offer.

If the offer is a form:

If the offer is a link:

26



Generate the ticket

For each ticket generated, add a string naming the action it refers to, and store the
combined string in a ticket pool in the session of the user who receives the offer.

If the action in question is, for instance, to confirm deletion of a note numbered
1234, and the ticket is represented as LZE9QfzQK5mgysK, the string to store could
be delnote-1234-LZE9QfzQK5mgysK.

27

Web Server

Web Application

delnote-1234-LZE9QfzQK5mgysK

LZE9QfzQK5mgysK

You now have the same ticket on
both the client-side and the server
side.



Perform the relevant action

Whenever a request to perform an action arrives from the user, extract the ticket
from the request.

28

Web Server

Web Application

delnote-1234-LZE9QfzQK5mgysK

LZE9QfzQK5mgysK

Then add the name of the action that is about to be
performed to the beginning of the string, and look
for a match in the session ticket pool.

If a matching ticket is found, you may assume that
the offer was given by your web site.
▪ In that case, perform the action, and remove the

ticket from the pool.

delnote-1234-LZE9QfzQK5mgysK

delnote-1234-LZE9QfzQK5mgysK



Gotchas

The ticket system works because attackers will not be able to guess what ticket
values you may have given to the user, and they will not be able to insert tickets into
the victim’s ticket pool on the server side.

1. If you include the tickets in GET requests, so that they become part of
URLs, you risk ticket leakage through Referer headers if the user follows a link
from your site to other web servers.

2. The system will break if your application is vulnerable to Cross-site Scripting.
If an attacker is able to insert JavaScript in a page generated by your server,
he will be able to extract tickets from the page.

29



HINTS IN TICKET SYSTEM IMPLEMENTATION

1. Web pages with tickets in them cannot be cacheable, as each ticket can only be
used once.
Tell browsers and proxies not to cache pages with tickets in them to make sure
every page comes with fresh, valid tickets.

2. Put an upper limit on the number of tickets in a pool.
There will be left-over tickets, as users do not necessarily follow up on all the offers we

give them.

When the limit is reached, remove the oldest ticket and add the new one.

The limit will stop people from deliberately filling up memory with unused tickets.

30



3. Session timeouts make the server-side ticket pools disappear.
The result is that we may get legitimate incoming requests with no matching
ticket on the server, for instance from a user who has spent an hour filling in lots
of details in a web form.
Users won’t be happy if we throw away their input.
Instead we could redisplay the web page with a new ticket and all the incoming
text filled in, tagged with an explanatory message that asks him to confirm that
he really intends to perform the action.

31



4. Tickets are needed only for requests that actually change something on the
server.
A user who wants to edit a note, for example, will first request the note editing
form, typically by clicking a link.
This request does not change anything, so it need not be protected by a
ticket.
When he has finished editing, he POSTs his changes.
The second request updates the server-side database, so it should be
protected by a ticket.

32



Summary

33



SUMMARY

▪ Attackers may give their victims offers on behalf of a target web site and
thereby trick them into doing something they never intended to do.

▪ The offers may be URLs or auto-submitting forms, and they may be given
through any channel available, such as E-mails and web pages outside of the
target site.

▪ To protect a web site and its users from these Web Trojans, web developers
will need to implement special security mechanisms, for instance the ticket
system.

34



SUMMARY

▪ The ticket system will make sure an action taken is based on an offer given by
the web site rather than by some off-site attacker.

▪ As of writing, mechanisms to protect against Web Trojans are not commonly in
use, making lots of web sites vulnerable.

35



YOUR TASKS FOR THIS WEEK

Reading:
▪ “Innocent Code: A Security Wake-Up Call for Web Programmers (Chapter 5).

36



37



LAB PRACTICE

Input Validation
▪ Download Lab Week 5 Instruction file from course webpage on GitHub.

https://hogeschool.github.io/Software-Quality/

Read the Instructions and perform the tasks.

38

https://hogeschool.github.io/Software-Quality/

